Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 29)

  • 16339 lượt thi

  • 45 câu hỏi

  • 50 phút

Câu 1:

Cho 4 điểm A, B, C, D bất kì. Chứng minh \(\overrightarrow {AB} + \overrightarrow {C{\rm{D}}} = \overrightarrow {A{\rm{D}}} + \overrightarrow {CB} \).

Xem đáp án

Ta có:

Cho 4 điểm A, B, C, D bất kì. Chứng minh vecto AB + vecto CD = vecto AD  (ảnh 1)

Vậy \(\overrightarrow {AB} + \overrightarrow {C{\rm{D}}} = \overrightarrow {A{\rm{D}}} + \overrightarrow {CB} \).


Câu 2:

Cho hàm số f(x) có đạo hàm f’(x) = x(x − 1)(x + 4)3 , x R. Số điểm cực tiểu của hàm số đã cho là

Xem đáp án

Đáp án đúng là: A

Ta có

Cho hàm số f(x) có đạo hàm f’(x) = x(x - 1)(x + 4)^3 , với mọi x thuộc R (ảnh 1)

Ta có bảng xét dấu của f’(x)

Cho hàm số f(x) có đạo hàm f’(x) = x(x - 1)(x + 4)^3 , với mọi x thuộc R (ảnh 2)

Dựa vào bảng xét dấu của f'(x) suy ra hàm số đã cho có 2 điểm cực tiểu.

Vậy ta chọn đáp án A.


Câu 3:

Cho hàm số f(x) có đạo hàm f’(x) = x(x − 1)2 , x R. Số điểm cực tiểu của hàm số đã cho là

Xem đáp án

Đáp án đúng là C

Ta có:

f’(x) = 0 x(x − 1)2 = 0 \(\left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Ta xét dấu của f’ (x)

Cho hàm số f(x) có đạo hàm f’(x) = x(x - 1)^2 , với mọi x thuộc R. Số điểm cực tiểu  (ảnh 1)

Ta thấy đạo hàm đổi dấu đúng 1 lần nên hàm số đã cho có đúng 1 cực trị

Vậy ta chọn đáp án C.


Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SD = \(\frac{3}{2}a\). Hình chiếu vuông góc của S lên mặt đáy (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ A đến mặt phẳng (SBD).

Xem đáp án
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SD (ảnh 1)

Gọi H là trung điểm của AB

Suy ra SH (ACBD)

Do đó SH HD

Hay tam giác SHD vuông tại H

Suy ra \(SH = \sqrt {S{{\rm{D}}^2} - D{H^2}} \)

Vì tam giác AHD vuông tại A

Nên \(D{H^2} = A{H^2} + A{{\rm{D}}^2} = \frac{{{a^2}}}{4} + {a^2} = \frac{5}{4}{a^2}\)

Suy ra \(SH = \sqrt {S{{\rm{D}}^2} - D{H^2}} = \sqrt {\frac{9}{4}{a^2} - \frac{5}{4}{a^2}} = \sqrt {{a^2}} = a\)

Ta có \({V_{S.ABC{\rm{D}}}} = \frac{1}{3}.SH.{S_{ABC{\rm{D}}}} = \frac{1}{3}.a.{a^2} = \frac{{{a^3}}}{3}\)

Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H trên SK

Ta có

\(\left\{ \begin{array}{l}B{\rm{D}} \bot HK\\B{\rm{D}} \bot SH\end{array} \right. \Rightarrow BH \bot (SHK)\)

Suy ra BD HE

Mà SK HE nên HE (SBD)

Ta có: HK = HB . sin \(\widehat {KBH}\) = \(\frac{a}{2}.\sin 45^\circ = \frac{a}{2}.\frac{{\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{4}\)

Suy ra \(HE = \frac{{HS.HK}}{{\sqrt {H{{\rm{S}}^2} + H{K^2}} }} = \frac{{a.\frac{{a\sqrt 2 }}{4}}}{{\sqrt {{a^2} + \frac{{2{{\rm{a}}^2}}}{{16}}} }} = \frac{{{a^2}\sqrt 2 }}{{4\sqrt {\frac{9}{8}{a^2}} }} = \frac{a}{3}\)

Do đó d(A,(SBD) = 2 d(H,(SBD)) = 2 HE = \(\frac{{2{\rm{a}}}}{3}\)


Câu 5:

Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của tia CD lấy điểm F sao cho CE = CF.

a) Chứng minh DE = BF.

b) Tia DE cắt BF tại H. Chứng minh \(\widehat {DHF}\) = 90°

c) Gọi I là trung điểm của EF, K là giao điểm của FE và BD. Chứng minh tứ giác AOIK là hình bình hành.

d) Chứng minh A, H, K thẳng hàng.

Xem đáp án
Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của (ảnh 1)

a) Vì ABCD là hình vuông nên AB = BC = CD = DA và

\(\widehat {ABC} = \widehat {BC{\rm{D}}} = \widehat {C{\rm{D}}A} = \widehat {DAB} = 90^\circ \)

Xét DEC và BFC có

EC = FC (giả thiết)

\(\widehat {DCE} = \widehat {BCF} = 90^\circ \)

DC = BC (chứng minh trên)

Do đó DEC = BFC (c.g.c)

Suy ra DE = BF (2 cạnh tương ứng), \(\widehat {E{\rm{D}}C} = \widehat {FBC}\)

b) Xét BEH và DEC có

\(\widehat {BEH} = \widehat {DEC}\) (hai góc đối đỉnh)

\(\widehat {E{\rm{D}}C} = \widehat {FBC}\) (chứng minh câu a)

Suy ra  (g.g)

Do đó \(\widehat {BHE} = \overrightarrow {DCE} \)

\(\overrightarrow {DCE} = 90^\circ \) nên \(\widehat {BHE} = 90^\circ \)

Hay DE BF

Suy ra \(\widehat {DHF} = 90^\circ \)

c) Xét tam giác BDF có

DE  BF

BC  DF

DE cắt BC tại E

Suy ra E là trực tâm tam giác BDF

Do đó FK BD

Mà AO BD

Suy ra AO // IK

Vì CE = CF nên tam giác CEF cân tại C

Mà CI là trung tuyến

Suy ra CI là đường cao

Hay CI EF

Xét tứ giác OKIC có

\(\widehat {OKI} = \widehat {K{\rm{O}}C} = \widehat {CIK} = 90^\circ \)

Suy ra OKIC là hình chữ nhật

Do đó OC = KI

Mà OC = AO

Suy ra AO = KI

Xét tứ giác AOIK có AO // KI , AO = KI (chứng minh trên)

Suy ra AOIK là hình bình hành

d) Xét tứ giác ABHD có \(\widehat {BA{\rm{D}}} + \widehat {BHD} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra tứ giác ABHD nội tiếp

Do đó \(\widehat {AHB} = \widehat {A{\rm{D}}B} = 45^\circ \)

Xét tứ giác DKHF có \(\widehat {{\rm{DKF}}} = \widehat {DHF} = 90^\circ \)

Suy ra tứ giác DKHF nội tiếp

Do đó \(\widehat {KHB} = \widehat {{\rm{FD}}B} = 45^\circ \)

Suy ra \(\widehat {AHB} = \overrightarrow {KHB} \)

Suy ra AH ≡ KH

Do đó A, H, K thẳng hàng

Vậy A, H, K thẳng hàng.


Bài thi liên quan:

Các bài thi hot trong chương:

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận