Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án (Phần 38)

  • 13730 lượt thi

  • 92 câu hỏi

  • 100 phút

Câu 1:

Cho \(\left\{ \begin{array}{l}a + b \ne 0\\a;\;b \ne 0\end{array} \right.\). Chứng minh rằng: \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].

Xem đáp án

Lời giải

Ta có \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} \]

\[ = \sqrt {{{\left( {\frac{1}{a} + \frac{1}{b}} \right)}^2} + \frac{1}{{{{\left( {a + b} \right)}^2}}} - \frac{2}{{ab}}} \]

\[ = \sqrt {{{\left( {\frac{{a + b}}{{ab}}} \right)}^2} + \frac{1}{{{{\left( {a + b} \right)}^2}}} - \frac{{2\left( {a + b} \right)}}{{ab}}\,.\,\frac{1}{{a + b}}} \]

\[ = \sqrt {{{\left( {\frac{{a + b}}{{ab}} - \frac{1}{{a + b}}} \right)}^2}} \]

\[ = \sqrt {{{\left( {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right)}^2}} \]

\[ = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\].

Vậy \[\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}} = \left| {\frac{1}{a} + \frac{1}{b} - \frac{1}{{a + b}}} \right|\] (đpcm).


Câu 2:

Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.

Xem đáp án

Lời giải

Ta có a + b + c = 0 Þ a + b = −c

Suy ra \[\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{{\left( {a + b} \right)}^2}}}\]

\[ = \frac{{{a^2}{b^2} + 2a{b^3} + {b^4} + {a^4} + 2{a^3}b + {a^2}{b^2} + {a^2}{b^2}}}{{{a^2}{b^2}{{\left( {a + b} \right)}^2}}}\]

\( = \frac{{{b^2}{{\left( {a + b} \right)}^2} + {a^2}{{\left( {a + b} \right)}^2} + {{\left( {ab} \right)}^2}}}{{{a^2}{b^2}{{\left( {a + b} \right)}^2}}}\)

\[ = \frac{{{a^4} + 2a{b^3} + 2{a^3}b + 3{a^2}{b^2} + {b^4}}}{{{a^2}{b^2}{{\left( {a + b} \right)}^2}}}\]

\[ = \frac{{{{\left( {{a^2} + ab + {b^2}} \right)}^2}}}{{{a^2}{b^2}{{\left( {a + b} \right)}^2}}}\]

\[ = {\left( {\frac{{{a^2} + ab + {b^2}}}{{ab\left( {a + b} \right)}}} \right)^2}\] là bình phương của một số hữu tỉ.


Câu 3:

Cho biểu thức: \[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \].

a) Rút gọn A.

b) Tìm các giá trị nguyên của x để giá trị của A là một số nguyên.

Xem đáp án

Lời giải

a) ĐKXĐ: x ¹ 0

\[A = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{x^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8x} \]

\[ = \sqrt {\frac{{{x^4} - 6{x^2} + 9 + 12{x^2}}}{{{x^2}}}} + \sqrt {{x^2} + 4x + 4 - 8x} \]

\[ = \sqrt {\frac{{{x^4} + 6{x^2} + 9}}{{{x^2}}}} + \sqrt {{x^2} - 4x + 4} \]

\[ = \sqrt {\frac{{{{\left( {{x^2} + 3} \right)}^2}}}{{{x^2}}}} + \sqrt {{{\left( {x - 2} \right)}^2}} \]

\[ = \left| {\frac{{{x^2} + 3}}{x}} \right| + \left| {x - 2} \right|\]

\[ = \left| {x + \frac{3}{x}} \right| + \left| {x - 2} \right|\]

b) Để A Î ℤ thì \[\left| {x + \frac{3}{x}} \right| + \left| {x - 2} \right| \in \mathbb{Z} \Leftrightarrow \frac{3}{x} \in \mathbb{Z}\]

Þ x Î Ư(3) = 1; ± 3}.

Vậy x Î {±1; ±3} thì A đạt giá trị nguyên.


Câu 4:

Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).

a) Rút gọn biểu thức P.

b) Tìm bậc và hệ số biểu thức B.

c) Tìm giá trị các biến để P £ 0.

Xem đáp án

Lời giải

a) Ta có \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\)

\( = - \frac{2}{3}{x^2}{y^3}{z^2}\,.\, - \frac{1}{8}{x^3}{y^3}{x^2}{y^4}{z^2}\)

\[ = \left[ {\left( { - \frac{2}{3}} \right)\,.\,\left( { - \frac{1}{8}} \right)} \right]\left( {{x^2}\,.\,{x^3}\,.\,{x^2}} \right)\left( {{y^3}\,.\,{y^3}\,.\,{y^4}} \right)\left( {{z^2}\,.\,{z^2}} \right)\]

\[ = \frac{1}{{12}}{x^7}{y^{10}}{z^4}\].

b) Hệ số của biểu thức B là \(\frac{1}{{12}}\) và B có bậc là 21.

c) Để P £ 0 thì \[\frac{1}{{12}}{x^7}{y^{10}}{z^4} \le 0 \Rightarrow {x^7} \le 0 \Rightarrow x \le 0\] (do y10, z4 ³ 0; "y, z Î ℝ)

Vậy x £ 0; y, z Î ℝ.


Câu 5:

Chứng minh: \(\sqrt {{a^2} + {b^2}} + \sqrt {{c^2} + {d^2}} \ge \sqrt {{{\left( {a + c} \right)}^2} + {{\left( {b + d} \right)}^2}} ,\;\forall a,\;b,\;c,\;d \in \mathbb{R}\).

Xem đáp án

Lời giải

Bất đẳng thức cần chứng minh

\( \Leftrightarrow {a^2} + {b^2} + {c^2} + {d^2} + 2\sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} \ge {\left( {a + c} \right)^2} + {\left( {b + d} \right)^2}\)

\( \Leftrightarrow ac + bd \le \sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} \) (1)

• Nếu ac + bd < 0: BĐT luôn đúng

• Nếu ac + bd ³ 0 thì (1) tương đương

(ac + bd)2 £ (a2 + b2)(c2 + d2)

Û (ac)2 + (bd)2 + 2abcd £ (ac)2 + (ad)2 + (bc)2 + (bd)2

Û (ad)2 + (bc)2 − 2abcd ³ 0

Û (ad − bc)2 ³ 0 (luôn đúng).

Vậy bài toán được chứng minh.


Bài thi liên quan:

Các bài thi hot trong chương:

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận